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Abstract 

The problem of uniform distribution of points on arbitrary analytic surfaces in three-

dimensional space is considered. A universal algorithm for uniform distribution of points on 

analytic surfaces defined by the parametric method is proposed. Neumann's method for 

generating a two-dimensional random variable by using a known density function of the joint 

distribution is described. Graphical presentations of the proposed algorithm obtained with the 

help of Wolfram Mathematica 7.0 are demonstrated. The examples of uniform distribution of 

points on surfaces of sphere, torus, helicoid, "falling drop" and surface of Klein bottle are 

presented. 
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1. Introduction 

The problem of uniform distribution of points on surfaces is important for various field of 

science such as mathematical modeling, numerical modeling, apply mechanics, Monte Carlo 

techniques and many others. 

There exists many papers and internet sources devoted to the problem of  points uniform 

distribution on surface of sphere, see, for example, references [1-3] and references therein. 

Namely problem of uniform distribution of points on the spherical surface shows main 

difficulties associated with uniform distribution of surfaces. It is especially important to note the 

investigation by G. Melfi and G. Schoier, see in reference [4], where the algorithm of uniform 

distribution of points on surfaces ( , )z z x y=  is presented. Their algorithm is closely related to 

our method.  

The proposed in this paper algorithm is most general for uniform distribution of points on 

various surfaces because it allows to uniformly distribute points on  arbitrary analytic surfaces in 

three-dimensional space  which can be defined in the parametric form ( , )u v=r r , that is by 



functions ( , )x x u v= , ( , )y y u v= , ( , )z z u v= , defined on the domain 

1 2 1 2{ ; }.D u u u v v v= ≤ ≤ ≤ ≤  

This definition allows us dial with such surfaces as torus, helicoid, Klein bottle and so on, 

and also it includes sphere surface and surfaces of explicit definition form such as surfaces 

( , )z z x y= . 

The proposed algorithm consists in two main parts. The first one is the finding of density 

function of the joint distribution corresponding to uniform distribution of points on given 

surface. The second one is the generating of two-dimensional random variable using generalized 

Neumann's method called also acceptance-rejection method. 

 

2. Statement of problem 

Let parametric surface be defined by parametric functions 

( , )x x u v= , ( , )y y u v= , ( , )z z u v= , 

where the parameters u  and v  are defined the domain 1 2 1 2{ ; }.D u u u v v v= ≤ ≤ ≤ ≤  

It is necessary to distribute uniformly points on this surface. 

 

3. Density function finding 

Let parametric surface be defined by parametric functions ( , )x x u v= , ( , )y y u v= , 

( , )z z u v= , where the parameters u  and v  are defined in the domain 

1 2 1 2{ ; }.D u u u v v v= ≤ ≤ ≤ ≤  

It is necessary to find analytically a density function ( , )f u v  of the joint distribution of 

parameters u  and v  corresponding to uniform distribution of points on the considered surface. 

In the case when points are uniformly distributed on the considered surface, probability of 

entering of any point A  on a surface element dS  can be defined as 

( )
dS

P A dS
S

⊂ = ,  

where 2
dS EG F dudv= − , 2

D

S EG F dudv= −∫∫ , where E , F , G  are the coefficients of the 

first fundamental form of surface, see [5]. And hence, 
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The probability a point A  to appear on surface element dS  can be also defined as  

( ) ( , )P A dS f u v dudv⊂ = ,      (3.2) 



where ( , )f u v  is the required density function of the joint distribution of parameters u  and v . 

Taking into account expressions (3.1) and (3.2) we obtain 
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By generating the values of u , v  with the help of the obtained function ( , )f u v , and then 

finding correspond coordinates of points, we obtain uniform distribution of points on the 

considered surface.  

 

 

4. Generating multidimensional random variable by using a known density function 

of the joint distribution  

Various methods are used to generate one-dimensional random variable by using a known 

density function of distribution, see [6]. For example, the inverse-transform method can be 

applied when the probability distribution function can be obtained analytically. However, 

application of this method meets difficulties in the cases of multidimensional distributions of 

dependent random variables. A universal method generation of one-dimensional random variable 

is the acceptance-rejection method known also as Neumann’s method. Firstly, let us consider the 

acceptance-rejection method for the example of one-dimensional random variable generation  by 

using function of the joint distribution. Then we consider a generalization of this method for 

multidimensional random variable generating by using a known density function of the joint 

distribution. 

 

 
 

Fig. 4.1. This figure illustrates acceptance-rejection method for generation of one-dimensional 

random variable 
 

In the case of generation of one-dimensional random variable, the acceptance-rejection 

method consists in the following steps (see fig. 4.1): 



1) The density function of distribution is placed in the rectangle such a way as it is 

shown in figure 4.1; 

2) One generates random point with coordinates ( )Randomx b a a= − + , 

Randomy c= , where Random  is random number on interval (0,1) ; 

3) The obtained point is accepted if it lies below the curve of density function of 

distribution. Otherwise, the point is rejected (see fig. 4.1); 

4) One then repeats steps 2, 3. 

In application to multi-dimensional cases the generation procedure is unchanged except 

one take into account changes in the dimensionality of space. For two-dimensional random 

variables corresponding to our case, obviousness of algorithm is unchanged, since accept-

rejection procedure is carried out in the three-dimensional space. In this case, the algorithm is 

implemented as follows: 

1) One finds max ( , )
D

f u v  - maximal value of function ( , )f u v  in the domain 

1 2 1 2{ ; }D u u u v v v= ≤ ≤ ≤ ≤ . 

2) Two random numbers 0 2 1 1( )Random+u u u u= − , 0 2 1 1( )Random+v v v v= −  are 

generated, where Random  is random number on interval (0,1) ; 

3) If 0 0Random max ( , ) < ( , )
D

f u v f u v× , the point is accepted (here, Random  is also 

random number on interval (0,1) ). Otherwise, the point is rejected; 

4) One repeats steps 2, 3. 

 

5. Graphical presentation of results 

The described above algorithms can be realized in the package Wolfram Mathematica 7.0, 

which allows to show visual models. It is very convenient to control performance of algorithm. 

Several results are presented below. 

Example 1. A uniform distribution of 15000 points on a sphere are presented in figure 5.1. 

The surface of sphere is defined by following equations: 

( , ) sin cosx x u v u v= = , ( , ) sin siny y u v u v= = , ( , ) cosz z u v u= = , 

where 0 u π≤ ≤ , 0 2v π≤ ≤ .    

 



 
 

Fig. 5.1. A uniform distribution of 15000 points on the surface of sphere,  

ViewPoint: {1,2,2} 
 

Example 2. A uniform distribution of 20000 points on a torus is presented in figure 5.2. 

The surface of torus is defined by following equations: 

( , ) (3 cos )cosx x u v u v= = + , ( , ) (3 cos )siny y u v u v= = + , ( , ) sinz z u v u= = , 

where 0 2u π≤ ≤ , 0 2v π≤ ≤ . 

 

 
 

Fig. 5.2. A uniform distribution of 20000 points on the surface of torus,  

ViewPoint: {1,2,2} 
 

Example 3. A uniform distribution of 15000 points on a helicoid is presented in figure 5.3. 

The surface of helicoid is defined by the following equations: 

( , ) cosx x u v u v= = , ( , ) siny y u v u v= = , ( , )z z u v v= = , 

where 0 2u π≤ ≤ , 0 2v π≤ ≤ . 



 

 
 

Fig. 5.3. A uniform distribution of 15000 points on the surface of helicoid,  

ViewPoint: {1,2,2} 
 

Example 4. A uniform distribution of 20000 points on the surface of "falling drop" is 

presented in figure 5.4. The surface of "falling drop" is defined by the following equations: 

2( , ) 1 cosx x u v v v u= = − , 2( , ) 1 siny y u v v v u= = − , ( , )z z u v v= = − , 

where 0 2u π≤ ≤ , 0 1v≤ ≤ . 

 

 
 

Fig. 5.4. A uniform distribution of 20000 points on the surface of "falling drop",  

ViewPoint: {1,2,2} 



Example 5. A uniform distribution of 15000 points on Klein bottle is presented in figure 

5.5. Surface of Klein bottle is defined by the following equations [7]: 

6 42
( , ) cos (3cos 5sin cos cos 30sin 60sin cos 90sin cos )

15
x x u v u v u v u u u v u v= = − + − − + , 

7 6 5

4 3 2

1
( , ) sin (80cos cos sin 48cos cos 80cos cos sin

15

48cos cos 5cos cos sin 3cos cos 5sin cos cos 3cos 60sin )

y y u v u v u u v u v u u

v u v u u v u u v u v u

= = − + − −

− − − + + −

, 

2
( , ) sin (3 5sin cos )

15
z z u v v u u= = + , 

where / 2 / 2π π− ≤ , 0 2v π≤ ≤ . 

 

 
 

Fig. 5.5. Uniform distribution of 15000 points on surface of Klein bottle, 

ViewPoint: {1,2,2} 
 

6. Conclusions 

The visual analysis of obtained results confirms efficiency of the proposed algorithm. The 

algorithm is applied to various surfaces. Therefore, this method may be useful as a tool for 

different investigations, especially, for research which use Monte Carlo techniques. 
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